Tag Archives: ePassport

TR-03105 Part 3.2 V1.5.1 or How I met your master file

A few days ago German BSI has released a maintenance release of TR-03105 Part 3.2. Primarily, the new version 1.5.1 includes editorial changes. Tests of this specification are focusing on eMRTD and the data groups and protocols used there.

What’s new in TR-03105 Part 3.2 Version 1.5.1?

  • Reference documentation: Re-arranged documents of the same type are now in direct neighbourhood to make them easier to find
  • Reference documentation: Added ICAO Doc9303 Part 9 and ICAO Doc9303 Part 12
  • Added a new profile “Master File” for eMRTD supporting a Master File as root directory
  • Unit ISO7816_J: Clarification, that all test cases of this test unit which require the “Open ePassport Application” procedure must be performed twice (one test run with BAC and one with PACE) if the chip supports both protocols. If the chip only supports one of these protocols (BAC or PACE), only one test run has to be performed with the supported protocol used in the “Open ePassport Application” procedure
  • Test case ISO7816_J_12: Clarification in expected result (step 1)
  • Test case ISO7816_L_13: Added new profile “MF”
  • Test case ISO7816_L_14: Clarification in purpose
  • Test case ISO7816_L_15: Clarification in purpose
  • Test case ISO7816_L_16: Clarification in purpose
  • Some minor editorial changes

The one and only technical change in this version is test case ISO7816_L_13 where the new specified profile “MF” is added. This profile assures that this test case is only performed if the chip supports a Master File. Why is this profile needed? In the field there are several eMRTD without a MF. In case of PACE you need a MF to store files like EF.CadAccess or EF.ATR/INFO. But in the case of BAC a MF is not necessary. In clause 4 of ICAO Doc9303 Part 9 (7th edition) you can find the information “An optional master file (MF) may be the root of the file system” and further on “The need for a master file is determined by the choice of operating systems and optional access conditions”.

Characteristics of smart card file systems

All information of an eMRTD is stored in a file system defined in ISO 7816-4. A usual file system is organized hierarchically into dedicated files (DFs) and elementary files (EFs). Dedicated files can contain elementary files or other dedicated files. Applications are special variants of dedicated files (Application DF) and have to be selected by their DF name indicating the application identifier (AID). After the selection of an application, the file within this application can be accessed. On this way a smart card file system has a typical tree structure, as described in the following figure:

Example for smart card file structure (Source ISO/IEC 7816-4:2013
Example for smart card file structure (Source ISO/IEC 7816-4:2013)

Additionally, ICAO Doc 9303 describes in part 10 another sample file strucure with focus on eMRTD. Also in this case the master file is the root of the file system and all aditional files or applications are nodes or leafs of the tree For instance, following figure visuals a sample eMRTD file system including a master file:

Example for eMRTD file system (Source: ICAO Doc 9303 , Part 10 (7th edition, 2015)
Example for eMRTD file system (Source: ICAO Doc 9303 , Part 10 (7th edition, 2015)

Likewise, the eMRTD Application in the figure is the Application DF mentioned above in the ISO 7816 file structure. Both EF and DF can be selected with the APDU called SELECT. Compared to an EF, that is selected with the command ’00 A4 02 0C <Lc> <FID>’, an application is selected by the following APDU: ’00 A4 04 0C <Lc> <AID>’ (where <Lc> length of command, <FID> means File ID and <AID> means Application ID. The difference is in parameter P1 of the APDU: 04 indicates a ‘Select by DF name’ and 02 indicates a ‘Select EF under the current DF’.

Characteristics of a Master File

You can address the master file in almost the same manner as a EF or DF. A master file has s special file identifier, which is reserved only for master files: ‘3F 00′. This FID can be used to select the MF. Therefore ISO 7816 specifies the APDU ’00 A4 00 0C 02 3F 00′ to select the MF. On the other hand ICAO Doc 9303 part 10 (clause 3.9.1.1) specifies an alternative APDU to select MF: ’00 A4 00 0C’. In short: both commands are valid and select the MF. Beyond that, Doc 9303 recommends in the same clause in a note not to use the SELECT MF command. Why might this APDU cause problems? You can find the answer in ISO 7816 (clause 11.1.1): “If the current DF is neither a descendant of, nor identical to the previously selected DF, then the security status specific to the previously selected DF shall be revoked”. To sum up: changing the directory during Secure Messaging results in closing the secure channel and losing the secure session.

Version 1.5 of BSI TR-03105 Part 5.1 available

Introduction

The German BSI has released a new version 1.5 of TR-03105 Part 5.1. This technical guideline specifies conformity test cases for inspection system that are used in context of border control.

Cover of TR-03105 Part 5.1 Version 1.5
Cover of TR-03105 Part 5.1 Version 1.5

This new version replaces previous maintenance version 1.41, that was released in 2016. Most changes of the current release are based on comments of BSI, G+D Mobile Security and secunet Scurity Networks. This blog post decribes the changes, that took effect over the last months and were finalizied in version 1.5.

Important changes in version 1.5 of TR-03105 Part 5.1:

  • Several test cases are moved to ICAO Test Specification Part 4 for inspection systems
  • Removed transfer interface: specification deleted and test cases adopted.
  • Added new configuration for default EAC+PACE passport
  • Added new test suite for EF.CardSecurity (test suite LDS_J)
  • Added new test suite for EF.ATR/INFO (test suite LDS_K)
  • Added new test cases to verify trust anchor updates
  • Certificates:
    • Generic encoding of Certificate Holder Reference (CHR)
    • New certificates: DV_Cert_16, IS_Cert_16, CVCA_Link_Cert_16, CVCA_Link_Cert_17
  • New profile ‘DPRCTD-SHA1‘ for deprecated SHA-1 algorithm, including updated reference documents: several test cases require that an inspection system successfully validates any CSCA and DS certificate as well as SOD signed with RSA / DSA / ECDSA and SHA-1. This includes certificates and SOD signed 2019 or later. Doc9303 6th edition allowed for the usage of SHA-1, but Doc9303-12 7th edition (2015) clause 4.4.4 does not allow for the usage of these algorithms any longer: “SHA-224, SHA-256, SHA-384 and SHA-512, are the only permitted hashing algorithms”. There are plenty of eMRTDs with CSCA and DS certificates in circulation that follow the 6th edition and make use of SHA-1, i.e. an inspection system shall still support SHA-1. But the test specification should not explicitly require that an inspection system successfully validates a CSCA certificate, the corresponding DS certificate and the eMRTD’s SOD issued recently (or later during the life-time of the test specification) which are signed with RSA / DSA / ECDSA and SHA-1.
  • Deprecated algorithm SHA-1 is replaced by alternative hash algorithm if applicable:
    • Modified test cases: LDS_H_74, LDS_H_75, LDS_H_76, LDS_H_77, LDS_I_01, LDS_I_02, LDS_I_03
  • Updated list of abbreviations and reference documentation
  • Consistent wording of OID (ICAO guide lines and BSI guide lines)
  • Clarification concerning the usage of PACE (test suite ISO7816_G)
  • Updated and re-organised list of algorithms to be supported by inspection systems (chapter 7)
  • Updated list of abbreviations and reference documentation
  • Minor editorial changes

Moved test cases

  • ISO7816_A_01: moved to ICAO ISO7816_A_01
  • ISO7816_A_02: moved to ICAO ISO7816_A_02
  • ISO7816_A_03: moved to ICAO ISO7816_A_04 
  • ISO7816_B_01: moved to ICAO ISO7816_B_01
  • ISO7816_B_02: moved to ICAO ISO7816_B_02
  • ISO7816_B_03: moved to ICAO ISO7816_B_03
  • ISO7816_B_04: moved to ICAO ISO7816_D_01
  • ISO7816_B_05: moved to ICAO ISO7816_D_02
  • ISO7816_B_06: moved to ICAO ISO7816_D_03
  • ISO7816_B_07: moved to ICAO ISO7816_D_04
  • ISO7816_B_08: moved to ICAO ISO7816_D_05
  • ISO7816_B_09: moved to ICAO ISO7816_D_06
  • ISO7816_B_10: moved to ICAO LDS_D32
  • ISO7816_C_01: moved to ICAO ISO7816_F_01
  • ISO7816_C_02: moved to ICAO ISO7816_F_02    
  • ISO7816_C_03: moved to ICAO ISO7816_F_03
  • ISO7816_C_04: moved to ICAO ISO7816_F_04
  • ISO7816_C_05: moved to ICAO ISO7816_F_05
  • ISO7816_C_06: moved to ICAO ISO7816_F_06
  • ISO7816_C_07: moved to ICAO ISO7816_F_07
  • ISO7816_C_08: moved to ICAO ISO7816_F_08
  • ISO7816_D_01: moved to ICAO ISO7816_G_01
  • ISO7816_D_02: moved to ICAO ISO7816_G_02
  • ISO7816_D_03: moved to ICAO ISO7816_G_03
  • ISO7816_D_04: moved to ICAO ISO7816_G_04
  • ISO7816_D_05: moved to ICAO ISO7816_G_05
  • ISO7816_D_06: moved to ICAO ISO7816_G_06
  • ISO7816_D_07: moved to ICAO ISO7816_G_07
  • ISO7816_D_08: moved to ICAO ISO7816_G_08
  • ISO7816_D_09: moved to ICAO ISO7816_G_09
  • ISO7816_D_10: moved to ICAO ISO7816_G_10
  • ISO7816_D_11: moved to ICAO ISO7816_G_11
  • ISO7816_D_12: moved to ICAO ISO7816_G_12
  • ISO7816_D_13: moved to ICAO ISO7816_G_13
  • ISO7816_D_14: moved to ICAO ISO7816_G_14
  • ISO7816_D_15: moved to ICAO ISO7816_G_15
  • ISO7816_F_01: moved to ICAO ISO7816_E_01
  • ISO7816_F_02: moved to ICAO ISO7816_E_02
  • ISO7816_F_04: moved to ICAO ISO7816_E_03
  • ISO7816_F_05: moved to ICAO ISO7816_E_04
  • ISO7816_F_06: moved to ICAO ISO7816_E_05
  • ISO7816_F_07: moved to ICAO ISO7816_E_06
  • ISO7816_F_08: moved to ICAO ISO7816_E_07
  • ISO7816_F_09: moved to ICAO ISO7816_E_08
  • ISO7816_G_01: moved to ICAO ISO7816_C_01
  • ISO7816_G_02: moved to ICAO ISO7816_C_02
  • ISO7816_G_03: moved to ICAO ISO7816_C_03
  • ISO7816_G_04: moved to ICAO ISO7816_C_04
  • ISO7816_G_05: moved to ICAO ISO7816_C_05
  • ISO7816_G_06: moved to ICAO ISO7816_C_06
  • ISO7816_G_07: moved to ICAO ISO7816_C_07
  • ISO7816_G_08: moved to ICAO ISO7816_C_08
  • ISO7816_G_09: moved to ICAO ISO7816_C_09
  • ISO7816_G_10: moved to ICAO ISO7816_C_10
  • ISO7816_G_11: moved to ICAO ISO7816_C_11
  • ISO7816_G_12: moved to ICAO ISO7816_C_12
  • ISO7816_G_13: moved to ICAO ISO7816_C_13
  • ISO7816_G_14: moved to ICAO ISO7816_C_14
  • ISO7816_G_15: moved to ICAO ISO7816_C_15
  • ISO7816_G_16: moved to ICAO ISO7816_C_16
  • ISO7816_G_17: moved to ICAO ISO7816_C_17
  • ISO7816_G_18: moved to ICAO ISO7816_C_18
  • ISO7816_G_19: moved to ICAO ISO7816_C_19
  • ISO7816_G_20: moved to ICAO ISO7816_C_20
  • ISO7816_G_21: moved to ICAO ISO7816_C_21
  • ISO7816_G_22: moved to ICAO ISO7816_C_22
  • ISO7816_G_23: moved to ICAO ISO7816_C_23
  • ISO7816_G_24: moved to ICAO ISO7816_C_24
  • ISO7816_G_25: moved to ICAO ISO7816_C_25
  • ISO7816_G_26: moved to ICAO ISO7816_C_26
  • ISO7816_G_27: moved to ICAO ISO7816_C_27
  • ISO7816_G_28: moved to ICAO ISO7816_C_28
  • ISO7816_G_29: moved to ICAO ISO7816_C_29
  • ISO7816_G_30: moved to ICAO ISO7816_C_30
  • ISO7816_G_31: moved to ICAO ISO7816_C_31
  • ISO7816_G_32: moved to ICAO ISO7816_C_32
  • ISO7816_G_33: moved to ICAO ISO7816_C_33
  • ISO7816_G_34: moved to ICAO ISO7816_C_34
  • ISO7816_G_35: moved to ICAO ISO7816_C_35
  • ISO7816_G_38: moved to ICAO ISO7816_C_36
  • ISO7816_G_39: moved to ICAO ISO7816_C_37
  • ISO7816_G_40: moved to ICAO ISO7816_C_38
  • ISO7816_G_41: moved to ICAO ISO7816_C_39
  • LDS_A_01: moved to ICAO LDS_A_01
  • LDS_A_02: moved to ICAO LDS_A_02
  • LDS_A_03: moved to ICAO LDS_A_03
  • LDS_A_04: moved to ICAO LDS_A_04
  • LDS_A_05: moved to ICAO LDS_A_05
  • LDS_A_06: moved to ICAO LDS_A_06
  • LDS_A_07: moved to ICAO LDS_A_07
  • LDS_A_08: moved to ICAO LDS_A_08
  • LDS_A_09: moved to ICAO LDS_A_09
  • LDS_A_10: moved to ICAO LDS_A_10
  • LDS_B_01: moved to ICAO LDS_B_01
  • LDS_B_02: moved to ICAO LDS_B_02
  • LDS_B_03: moved to ICAO LDS_B_03
  • LDS_B_04: moved to ICAO LDS_B_04
  • LDS_B_05: moved to ICAO LDS_B_05
  • LDS_B_06: moved to ICAO LDS_B_06
  • LDS_B_07: moved to ICAO LDS_B_07
  • LDS_B_08: moved to ICAO LDS_B_08
  • LDS_B_09: moved to ICAO LDS_B_09
  • LDS_B_10: moved to ICAO LDS_B_10
  • LDS_B_11: moved to ICAO LDS_B_11
  • LDS_B_12: moved to ICAO LDS_B_12
  • LDS_B_13: moved to ICAO LDS_B_13
  • LDS_B_14: moved to ICAO LDS_B_14
  • LDS_B_15: moved to ICAO LDS_B_15
  • LDS_B_16: moved to ICAO LDS_B_16
  • LDS_B_17: moved to ICAO LDS_B_17
  • LDS_B_18: moved to ICAO LDS_B_18
  • LDS_B_19: moved to ICAO LDS_B_19
  • LDS_B_20: moved to ICAO LDS_B_20
  • LDS_B_21: moved to ICAO LDS_B_21
  • LDS_B_22: moved to ICAO LDS_B_22
  • LDS_B_23: moved to ICAO LDS_B_23
  • LDS_B_24: moved to ICAO LDS_B_24
  • LDS_B_25: moved to ICAO LDS_B_25
  • LDS_B_26: moved to ICAO LDS_B_26
  • LDS_B_27: moved to ICAO LDS_B_27
  • LDS_B_28: moved to ICAO LDS_B_28
  • LDS_C_01: moved to ICAO LDS_C_01
  • LDS_C_02: moved to ICAO LDS_C_02
  • LDS_C_03: moved to ICAO LDS_C_03
  • LDS_C_04: moved to ICAO LDS_C_04
  • LDS_C_05: moved to ICAO LDS_C_05
  • LDS_C_06: moved to ICAO LDS_C_06
  • LDS_C_07: moved to ICAO LDS_C_07
  • LDS_C_08: moved to ICAO LDS_C_08
  • LDS_C_09: moved to ICAO LDS_C_09
  • LDS_C_10: moved to ICAO LDS_C_10
  • LDS_C_11: moved to ICAO LDS_C_11
  • LDS_C_12: moved to ICAO LDS_C_12
  • LDS_C_13: moved to ICAO LDS_C_13
  • LDS_C_14: moved to ICAO LDS_C_14
  • LDS_C_15: moved to ICAO LDS_C_15
  • LDS_C_16: moved to ICAO LDS_C_16
  • LDS_C_17: moved to ICAO LDS_C_17
  • LDS_C_18: moved to ICAO LDS_C_18
  • LDS_C_19: moved to ICAO LDS_C_19
  • LDS_C_20: moved to ICAO LDS_C_20
  • LDS_C_21: moved to ICAO LDS_C_21
  • LDS_C_22: moved to ICAO LDS_C_22
  • LDS_C_23: moved to ICAO LDS_C_23
  • LDS_C_24: moved to ICAO LDS_C_24
  • LDS_C_25: moved to ICAO LDS_C_25
  • LDS_C_26: moved to ICAO LDS_C_26
  • LDS_C_27: moved to ICAO LDS_C_27
  • LDS_C_28: moved to ICAO LDS_C_28
  • LDS_H_17: moved to ICAO LDS_D_02
  • LDS_H_18: moved to ICAO LDS_D_03
  • LDS_H_19: moved to ICAO LDS_D_04
  • LDS_H_20: moved to ICAO LDS_D_05
  • LDS_H_21: moved to ICAO LDS_D_06
  • LDS_H_22: moved to ICAO LDS_D_07
  • LDS_H_23: moved to ICAO LDS_D_08
  • LDS_H_24: moved to ICAO LDS_D_09
  • LDS_H_25: moved to ICAO LDS_D_10
  • LDS_H_26: moved to ICAO LDS_D_11
  • LDS_H_27: moved to ICAO LDS_D_12
  • LDS_H_28: moved to ICAO LDS_D_13
  • LDS_H_29: moved to ICAO LDS_D_14
  • LDS_H_30: moved to ICAO LDS_D_15
  • LDS_H_31: moved to ICAO LDS_D_16
  • LDS_H_32: moved to ICAO LDS_D_17
  • LDS_H_33: moved to ICAO LDS_D_18
  • LDS_H_37: moved to ICAO LDS_D_19
  • LDS_H_38: moved to ICAO LDS_D_20
  • LDS_H_39: moved to ICAO LDS_D_21
  • LDS_H_40: moved to ICAO LDS_D_22
  • LDS_H_41: moved to ICAO LDS_D_23
  • LDS_H_42: moved to ICAO LDS_D_24
  • LDS_H_43: moved to ICAO LDS_D_25
  • LDS_H_44: moved to ICAO LDS_D_26 
  • LDS_H_48: moved to ICAO LDS_D_27 
  • LDS_H_49: moved to ICAO LDS_D_28 
  • LDS_H_53: moved to ICAO LDS_D_29 
  • LDS_H_67: moved to ICAO LDS_D_30 
  • LDS_H_68: moved to ICAO LDS_D_31 
  • LDS_H_86: moved to ICAO LDS_D_35
  • LDS_H_87: moved to ICAO LDS_D_36
  • LDS_H_88: moved to ICAO LDS_D_37
  • LDS_H_89: moved to ICAO LDS_D_38

New test cases

  • ISO7816_E_31: New test case to check dynamic binding between protocols
  • ISO7816_E_32: New test case to check TA including trust anchor update
  • ISO7816_E_33: New test case to check TA with two different trust anchors
  • ISO7816_E_34: New test case to check TA with offered but not needed trust anchor update
  • ISO7816_E_35: New test case to verify that the inspection system performs terminal authentication successfully with id-TA-RSA-v1-5-SHA-512 algorithm
  • ISO7816_E_36: New test case to verify that the inspection system performs terminal authentication successfully with id-TA-RSA-PSS-SHA-512 algorithm
  • ISO7816_E_37: New test case to verify that the inspection system performs terminal authentication successfully with id-TA-ECDSA-SHA-384 algorithm
  • ISO7816_E_38: New test case to verify that the inspection system performs terminal authentication successfully with id-TA-ECDSA-SHA-512 algorithm
  • LDS_H_90: New test case with EF.SOD inconsistent with EF.COM (more data groups)
  • LDS_H_91: New test case with EF.SOD inconsistent with EF.COM (less data groups)
  • LDS_H_92: New test case with EF.SOD inconsistent with EF.COM (different data groups)
  • LDS_H_93: New test case with EF.SOD with missing checksum of EF.CardAccess
  • LDS_H_94: New test case to verify that the inspection system performs correctly if EF.SOD contains RSASSA-PSS with SHA224, SHA224 DG hash, DS stored inside SOD
  • LDS_H_95: New test case to verify that the inspection system performs correctly if EF.SOD contains RSASSA-PSS with SHA384, SHA384 DG hash, DS stored inside SOD
  • LDS_H_96: New test case to verify that the inspection system performs correctly if EF.SOD contains RSASSA-PSS with SHA512, SHA512 DG hash, DS stored inside SOD
  • LDS_H_97: New test case to verify that the inspection system performs correctly if EF.SOD contains DSA with SHA224, SHA224 DG hash, DS stored inside SOD
  • LDS_H_98: New test case to verify that the inspection system performs correctly if EF.SOD contains DSA with SHA256, SHA256 DG hash, DS stored inside SOD
  • LDS_J_01: New test case with CardSecurity inconsistent with EF.CardAccess (more SecurityInfos)
  • LDS_J_02: New test case with CardSecurity inconsistent with EF.CardAccess (less SecurityInfos)
  • LDS_J_03: New test case with CardSecurity inconsistent with EF.CardAccess (different SecurityInfos)
  • LDS_J_03: New test case with an incorrect ChipAuthenticationPublicKeyInfo for PACE-CAM in EF.CardSecurity
  • LDS_J_04: New test case with an incorrect ChipAuthenticationPublicKeyInfo in EF.CardSecurity
  • LDS_K_01: New test case with valid encoding with two bytes length for APDU
  • LDS_K_02: New test case with valid encoding with three bytes length for APDU
  • LDS_K_03: New test case with only one valid value for command length
  • LDS_K_04: New test case with wrong tag 7F66

Modified test cases

  • ISO7816_E_01: Added profile ‚DPRCTD-SHA1‘
  • ISO7816_E_03: Added profile ‚DPRCTD-SHA1‘
  • ISO7816_E_05: Added profile ‚DPRCTD-SHA1‘
  • ISO7816_E_19: Clarification in purpose
  • LDS_H_01: Added profile ‚DPRCTD-SHA1 ‘
  • LDS_H_02: Added profile ‚DPRCTD-SHA1 ‘
  • LDS_H_08: Added profile ‚DPRCTD-SHA1 ‘
  • LDS_H_09: Added profile ‚DPRCTD-SHA1 ‘
  • LDS_H_10: Added profile ‚DPRCTD-SHA1 ‘
  • LDS_H_15: importance of test case changed form ‘Mandatory’ to ‘Optional’
  • LDS_H_79: Added profile ‚DPRCTD-SHA1‘
  • LDS_I_01: Clarification in purpose of test case

Deleted test cases

  • ISO7816_F_03: Test case deleted in version 1.5
  • LDS_H_16: Test case deleted in version 1.5

Update of BSI TR-03105 Part 3.2 available

Introduction

The German BSI has released new versions of their test specifications TR-03105 Part 3. These test specifications covers the protocols in the context of chips used in eID documents. Part 3.2 covers security protocols used in common eMRTDs. This blog post describes the changes of this new version 1.5. The last version was released in 2014 and since this time some changes were necessary.

Beside several editorial changes and maintenance the most important changes of TR-03105 Part 3.2 Version 1.5 are the move of both test suites concerning Chip Authentication to the ICAO test specification part 3 and the new test suite for EF.ATR/INFO. The file EF.ATR/INFO is recommended by ICAO to store the buffer sizes that should be used by the terminal to read the chip content in a performant way. Maintenance includes updating the referenced documents and a consistent wording (e.g. ‘Data Group’ or ‘FID’) in the whole specification.

Certificates are specified now in a more comfortable way similar to the way used in TR-03105 Part 3.3: Certificate Holder Reference (CHR) and Certification Authority Reference (CAR) are now specified in the parameter block in a human-readable way and not in hex as before.

The specified security status – described in chapter 3.2.1 – was updated: A Secure Messaging session SHOULD (instead of MUST in the previous version) be aborted if and only if a secure messaging error occurs.

The list of abbreviations in chapter 1.1 was updated (e.g. FID or SFI) and corrected (e.g. CAR).

Profiles were adapted to handle the optional Basic Access Control (BAC) protocol and the optional file EF.ATR/INFO. Additionally all profiles for Chip Authentication (CA_KAT, CA_ATGA and KeyRef) are deleted or rather moved to ICAO part 3.

Note: TR-03105 Part 3.1 Version 1.2.1 contains a new requirement for test laboratories: “During the certification process the test laboratory must ensure that the features quoted by the applicant in his Implementation Conformance Statement (ICS) are in fact in coincidence with the features supported and accordingly not supported by the chip”.

New test cases in version 1.5

BSI TR-03105 Part 3.2 contains the following new test cases / test units:

  • 7816_L_15: Test that the chip rejects an additional BAC run or resets extended access rights after successful PACE run (PACE, CA1, TA1, BAC)
  • 7816_L_16: Test that the chip rejects an additional PACE run or resets extended access rights after successful BAC run (BAC, CA1, TA1, PACE)
  • LDS_L: Test suite to verify the conformity of file EF.ATR/INFO

Modified test cases in version 1.5

BSI TR-03105 Part 3.2 contains the following modified test cases / test units / certificates:

  • DV_Cert_10c: Corrected CHR in certificate
  • DV_Cert_10d: Corrected CHR in certificate
  • DV_Cert_11b: Corrected CHR in certificate
  • 7816_H_xx: Used <Lc> instead of fixed encoded length of command in step 1
  • 7816_I and 7816_II: Test suites moved to ICAO Part 3
  • 7816_J_12: Accept also ’90 00′ as valid status word in step 1
  • 7816_K_1a: Added profile BAC
  • 7816_L_13: Added conditional step 10 to verify that access to data group 3 has NOT been granted
  • 7816_L_14: Corrected encoding of SELECT command in step 8
  • 7816_M_xx: Used <Lc> instead of fixed encoded length of command
  • LDS_E: Moved test cases LDS_E_1- LDS_E_4 (Chip Authentication) to ICAO part 3 and renumbering of test cases

It took more than a year to update this test specification in combination with Part 3.3 which handles eIDAS protocols and EACv2 used by eID cards. Several stake holders and members of ‘Deutsches Industrie Forum’ (DIF) commented both versions and at the end this version is a consensus of all participated bodies.

Update of ICAO RF and Protocol Test Specification

Introduction

Simultaneously the ICAO released updated and new versions of their ICAO test specifications for eMRTD and corresponding inspection systems. While the Technical AdvisorICAO Logoy Group (TAG) of ICAO endorsed the update on the ICAO website, from now on these test specifications can be referenced officially and can also be used for certification. Additionally, there is also a new test specification part 5 available focusing on PKI objects like certificates and revocation lists.

 

ICAO Test Specification Part 3 (eMRTD)

Finally version 2.11 of the ICAO test specification for eMRTDs is a result of two ISO SC17 WG3 TF4 meetings 2017 in Paris and 2018 in Tokyo and also a result of the interoperability test in Ispra 2017. First of all there are some interesting modifications compared with the previous version 2.10 released in 2016:

  • Test cases and ICS adoption for Chip Authentication Version 1 (test cases are moved from BSI TR-03105 Part 3.2)
  • Test of command robustness with invalid class bytes are removed
  • Clarifications concerning PACE test cases
  • Clarification concerning ISO execution errors
  • Clarification concerning extended length APDUs used during Active Authentication
  • Some corrections concerning LDS version 1.8
  • Additionally, there are some clarifications and minor editorial changes

New test cases in Version 2.11

Most noteworthy the ICAO test specification part 3 contains the following new test cases:

  • ISO7816_P_79: Negative test case to verify the Secure Messaging handling while PACE access is granted for the SELECT application command (bad send sequence counter)
  • ISO7816_R_07: Positive test case to verify the behavior of a PACE-protected eMRTD in response to the INTERNAL AUTHENTICATE
  • Test suite ISO7816_T: New test cases for Chip Authentication (this tests were moved from BSI TR-03105 Part 3.2 with minor corrections and remove robustness test of invalid class bytes)
  • LDS_E_01: Test the LDS tag of the DG14 object
  • LDS_E_02: Test the ASN.1 encoding of the SecurityInfos for Chip Authentication
  • LDS_E_03: Test the ASN.1 encoding of the ChipAuthenticationPublicKeyInfo
  • LDS_E_04: Test the ASN.1 encoding of the ChipAuthenticationInfo
  • LDS_K_05: Test the ASN.1 encoding of a PCKS#7 signedData object
  • LDS_K_06: Test the value that is encoded into the signedData element
  • LDS_K_07: Test the SignerInfo element of the signedData structure
  • LDS_K_08: Test the signing certificate used to verify the EF.CardSecurity object

Modified test cases in Version 2.11

The ICAO test specification part 3 contains the following modified test cases:

  • ISO7816_A_2: SELECT Application command with CLA byte ‘8F’ is removed
  • ISO7816_C_15: Test case removed (invalid CLA byte)
  • ISO7816_C_19: Test case removed (invalid CLA byte)
  • ISO7816_D_2: Test case removed (invalid CLA byte)
  • ISO7816_E_2: Test case removed (invalid CLA byte)
  • ISO7816_F_2: Test case removed (invalid CLA byte)
  • ISO7816_G_2: Test case removed (invalid CLA byte)
  • ISO7816_P_04: Test case removed (invalid CLA byte)
  • ISO7816_P_18: Test case removed
  • ISO7816_P_37: Test case removed (invalid CLA byte)
  • ISO7816_P_38: Test case removed (invalid CLA byte)
  • ISO7816_P_39: Test case removed (invalid CLA byte)
  • ISO7816_P_40: Test case removed (invalid CLA byte)
  • ISO7816_P_66: Hint, that in test scenario step 1 the length encoding of DO ’80’ must be correct
  • ISO7816_P_67: Hint, that in test scenario step 1 the length encoding of DO ’80’ must be correct
  • ISO7816_R_01: Generic length encoding of APDU
  • ISO7816_R_02: Generic use of DO ’97’ and length encoding of APDU
  • ISO7816_R_03: Hint, that INTERNAL AUTHENTICATE command must use Secure Messaging if access control mechanism is supported
  • ISO7816_R_04: Hint, that INTERNAL AUTHENTICATE command must use Secure Messaging if access control mechanism is supported
  • ISO781_S_03: Padding indicator ’01’ in DO ’85’ is removed (odd ins)
  • ISO781_S_04: Padding indicator ’01’ in DO ’85’ is removed (odd ins)
  • LDS_A_03: In EF.COM there is also LDS version 1.8 accepted
  • LDS_A_05: Purpose of test case is corrected
  • LDS_C_04: Check that the number of Biometric Information Group Templates (BIGT) is one
  • LDS_D_04: Check also the LDS security object version in test scenario step 4; a future version of Doc9303 part 10 requires that the signedData certificates field in LDS v1.8
    SHALL include the Document Signer Certificate (CDS)
  • LDS_D_06: Check that LDS Version Info element does not exist in test scenario step 8 and handle also LDS version 1.8 in this test case
  • LDS_D_07: Check that the validity period of the signing certificate MUST be within the validity period of the country signing certificate in test scenario step 4
  • Test suite LDS_E: Numbering of test cases has changed
  • LDS_E_07: Check also the hash algorithm output length of the signatureAlgorithm
  • LDS_J_05: ECDSA is also be handled in test scenario step 3 from now on

ICAO Test Specification Part 4 (Inspection Systems)

Also ICAO test specification part 4 version 2.11 is the result of a typical ISO process finalized by the same meetings in Paris and Tokyo of ISO SC17 WG3 TF4 mentioned above. Finally this specification contains also some interesting changes compared with the previous version 2.10 released in 2016:

  • Configuration of default EAC MRTD specifies EF.DG15
  • Specification of a default PACE-CAM protected eMRTD
  • Clarifications concerning PACE and PACE-CAM
  • Additionally, there are some clarifications and minor editorial changes.
  • Added profile AA.B4 to test signature generation scheme specified in ISO/IEC 9796-2 paragraph B.4.

New test cases in Version 2.11

The ICAO test specification part 4 contains the following new test cases:

  • ISO7816_E_11: Test case verifies that the inspection system performs the Active Authentication with RSA algorithm in the signature function and B.4 method
  • ISO7816_B_04: Positive test with BAC protected eMRTD and three line MRZ
  • ISO7816_G_16: Check correct execution of the Chip Authentication protocol
  • LDS_B_29: Test verifies that the test object can detect a mismatch between MRZ and EF.DG1 where MRZ uses TD2 format and EF.DG1 uses TD1 format
  • LDS_B_30: Test verifies that the test object can detect a mismatch between MRZ and EF.DG1 where MRZ uses TD1 format and EF.DG1 uses TD2 format
  • LDS_D_01: Added test cases for missing algorithm and signature combinations
  • LDS_D_19: Added test cases for DSA with various SHA algorithms
  • LDS_D_39: Test case verifies that the inspection system checks the signature in EF.CardSecurity and detects an invalid signature

Modified test cases in Version 2.11

The ICAO test specification part 4 contains the following modified test cases:

  • ISO7816_C_01: Test case include three line MRZ from now on
  • ISO7816_C_03: Editorial correction of protocol name
  • ISO7816_C_29: Use new configuration for PACE CAM protected eMRTD
  • ISO7816_C_30: Use new configuration for PACE CAM protected eMRTD
  • ISO7816_C_31: Use new configuration for PACE CAM protected eMRTD
  • ISO7816_C_32: Use new configuration for PACE CAM protected eMRTD
  • ISO7816_C_33: Use new configuration for PACE CAM protected eMRTD
  • ISO7816_C_34: Use a special configuration to indicate that the IS performs Passive Authentication
  • ISO7816_C_36: Change context form PACE-CAM to PACE (CAM -> GM)
  • ISO7816_C_39: Use new configuration for PACE CAM protected eMRTD
  • ISO7816_E_01: Use signature production function B.6
  • ISO7816_E_02: Clarification of EF.DG14 and specification of EF.DG15 and using of signature production function B.6
  • ISO7816_E_03: Use signature production function B.6
  • ISO7816_E_04: Use signature production function B.6
  • ISO7816_E_05: Use signature production function B.6
  • ISO7816_E_06: Use signature production function B.6
  • ISO7816_E_07: Use signature production function B.6
  • ISO7816_E_08: Use signature production function B.6
  • ISO7816_E_09: Perform Active Authentication with B.6 method of ISO/IEC 9796-2 and use RSA-SHA1; Hint, that the RSA operation during AA must result in a value bigger than n/2 with n being the modulus to ensure that method B6 is really used in this test case
  • ISO7816_E_10: Use signature production function B.6
  • ISO7816_F_03: Test case removed
  • ISO7816_G_07: Correction of key agreement algorithm (id-CA-DH-3DES-CBC-CBC)
  • ISO7816_G_11: Correction of key agreement algorithm (id-CA-DH-3DES-CBC-CBC)
  • ISO7816_G_15: Use default EAC configuration in this test case
  • LDS_A_01: Correction in EF.COM (removed data groups)
  • LDS_A_02: Correction in EF.COM (removed data groups)
  • LDS_A_03: Correction in EF.COM (removed data groups and correction of increased length)
  • LDS_A_04: Correction in EF.COM (removed data groups)
  • LDS_A_05: Correction in EF.COM (removed data groups)
  • LDS_A_06: Correction in EF.COM (removed data groups)
  • LDS_A_07: Correction in EF.COM (removed data groups)
  • LDS_A_08: Correction in EF.COM (removed data groups)
  • LDS_A_09: Correction in EF.COM (removed data groups)
  • LDS_A_10: Correction in EF.COM (removed data groups)
  • LDS_C_14: Access condition of EF.DG2 changed from BAC to PACE
  • LDS_C_17: Corrected ID of configuration
  • LDS_D_26: Access condition of EF.SOD changed from BAC to PACE
  • LDS_D_35: Corrected wording in specification of EF.SOD
  • LDS_D_36: Corrected wording in specification of EF.SOD and corrected title of test case
  • LDS_D_37: Corrected wording in specification of EF.SOD and corrected title of test case
  • LDS_D_38: Test case removed
  • LDS_E_01: Access condition of EF.DG15 changed from BAC to PACE
  • LDS_E_02: Access condition of EF.DG15 changed from BAC to PACE
  • LDS_E_03: Access condition of EF.DG15 changed from BAC to PACE
  • LDS_F_01: Correction in content of EF.DG14 (generic length)
  • LDS_F_02: Correction in content of EF.DG14 (generic length)
  • LDS_F_03: Correction in content of EF.DG14 (generic length)

New and noteworthy ICAO documents and updates

As mentioned in the introduction ICAO has release a new test specification for PKI objects. The new part 5 of ICAO test specifications is focusing on various things used in this context like certificates, certificate revocation lists (CRL) as well as master and deviation lists. Furthermore, there is a new version 1.7 of the technical report Visible Digital Seals for Non-Electronic Documents available.  Technical report Portrait Quality is released in version 1.0 where reference facial images for eMRTD are specified. Concerning LDS2 the technical report LDS2 – PKI specifies the PKI to support the ICAO LDS2 project including travel records, visa records and additional biometrics. Last but not least there is also a new version of technical report Logical Data Structure (LDS) for Storage of Data in the Contactless IC, Doc 9303-10 LDS 2 – New Applications available at the ICAO website.

First results of eMRTD Interoperability Test 2017 in Ispra

The European Commission (EC) organised another eMRTD interoperability test. This time the event took place in Ispra at the Joint Research Center of the European Union. The objective of this interoperability test was to assure that countries and companies have established a stable PACE protocol in their eMRTD, respective ePassports, and ID cards.

Test setup of eMRTD interoperability test

Every participant had the chance to submit up to two different sets of documents with different implementations. Altogether there were 42 different samples available at the beginning of the event. 2 samples didn’t pass the smoke test and one sample was not suitable to be tested by the labs. All remaining samples were tested in two different test procedures: crossover test and conformity test. Twelve document verification system providers with 16 different solutions took part in the crossover test. And 23 document providers threw 42 sets in the ring (28 countries, 14 industries).

In this blog post the conformity test is focused on, because protocols are in foreground in this kind of test. There were three test labs (Keolabs, UL and secunet) taking part in the interoperability test with their test tools to perform a subset of “ICAO TR RF Protocol and Application Test Standard for e-Passports, Part 3” (Version 2.10). The subset includes the following test suites and test cases:

  • ISO7816_O: Security conditions for PACE protected eMRTDs
  • ISO7816_P: Password Authenticated Connection Establishment (PACEv2)
  • ISO7816_Q: Command READ and SELECT for file EF.CardAccess
  • LDS_E: Matching between EF.DG14 and EF.CardAccess
  • LDS_I: Structure of EF.CardAccess
  • LDS_K: Structure of EF.CardSecurity
  • LDS_D_06: Test case to perform Passive Authentication

Information concerning documents

The document providers describe in the implementation conformance statement (ICS) the features of their chips. Not all ICS were fulfilled consistently, so the following information concerning the documents should be read carefully. Concerning the LDS version 16 providers reported version 1.7 to be used in their documents. And three reported version 1.8, while all others don’t deliver any information concerning the version number.

The following diagram describes the relation between DH and ECDH in PACE:

PACE algorithms

PACE algorithms

The following diagram describes the relation of the mapping protocols in PACE:

Mapping protocols in PACE

Mapping protocols

16 documents supported besides the MRZ also a CAN as a password to get access to the stored data.

Again, the number of PACEInfos store in EF.CardAccess varied:

  • 28 documents stored one PACEInfo,
  • Eight documents stored two PACEInfos,
  • One stored each three, seven or ten PACEInfos.

Investigations concerning EF.ATR/INFO in documents

The file EF.ATR/INFO allows storing some information about the chip, that allows the reader to handle the chip optimally. On this way the chip can offer the ideal buffer size used with extended length during reading and writing. In context of the event I had a closer look at EF.ATR/INFO. 26 documents of 42 stored an EF.ATR/INFO but 5 of them don’t offer information concerning extended length and buffer sizes there. So at the end I’ve investigated the reading buffer sizes of 21 documents of the eMRTD interoperability test with the following result:

  • Seven documents support buffer sizes between 1 and 1.5 KByte,
  • Three documents support buffer sizes between 1.5 and 2 KByte,
  • Eleven documents support buffer sizes of ~64 KByte.

Buffer sizes for reading in EF.ATR/INFO

Buffer sizes in EF.ATR/INFO (reading)

With these large buffer sizes data groups like DG2 storing the facial image or DG3 storing the finger prints can be read in only one command. This allows the inspection system to read the content of the chip faster and improves the reading time at eGates.

Results of conformity testing

During the conformity test, all three test labs performed 18.135 test cases altogether. Less than 1 percent of these test cases failed during the conformity test.

Overall results (layer 6 and layer 7):

  • Passed: 11.563
  • Failed: 155 (0,86%)
  • Not applicable: 6.417

Layer 6 (16.614 test cases performed):

  • Passed: 10.885
  • Failed: 124 (0,74%)

Layer 7 (1.521 test cases performed):

  • Passed: 679
  • Failed: 32 (2,10%)

The following diagram shows failed test cases per document during the eMRTD interoperability test:

Number of failures per document

Number of failures per document

The diagram below shows the number of failure per test case during the eMRTD interoperability test:

Failures per test case

Failures per test case

Observations during conformity testing

  • There are minor differences between implementation conformance statement (ICS) and chip.
  • Test results differ between test labs in some test cases.
  • There are differences in handling errors at the test tools and labs (e.g. no CAN causes a failure at the one lab and a ‘not applicable’ at the other lab).
  • Relatively more failures on layer 7 (personalisation) than on layer 6 (COS).
  • Very good quality of chip and personalisation.
  • Improvements during the last interoperability tests in London 2016 and Madrid 2014.
  • Stable specifications (BSI TR-03110, ICAO Doc 9303) and test specifications (BSI TR-03105, ICAO TR Part 3).

Call for Participation: Interoperability Test 2017 in Ispra

The European Commission will organize conformity and interoperability tests for eMRTDs together with a conference on 25th and 26th September 2017. It will be held in the European Commission Joint Research Centre (JRC) premises in Ispra, Italy. The tests will focus on the latest access control specifications (e.g. the operation of the PACE protocol with Chip Authentication Mapping). This security mechanism, known as “Password Authenticated Connection Establishment with Chip Authentication Mapping” (PACE-CAM) is specified in Technical Report BSI TR-03110 “Advanced Security Mechanisms for Machine Readable Travel Documents and eIDAS token” and it combines PACE and Chip Authentication (CA) into one protocol leading to faster ID document verification.

Logo JRC

The conference will take place on the second day (26/09/2017) and will include speakers from the EU Commission, ICAO (requested) and Member States (requested). At its end, the high-level aggregate results of the tests will be presented.

The main beneficiaries of these tests are EU Member States. Depending on the number of EU Member States that will participate in the event, and provided that it is possible from an organisational perspective, a limited number of non-EU ICAO Member States and private sector travel document manufacturers will be allowed to participate in the test (on a first come first serve basis).

The test will focus on the implementation of PACE as specified in the Technical Report “Radio Frequency Protocol and Application Test Standard for eMRTD Part 3 Tests for Application Protocol and Logical Data Structure“, Version: 2.10, July 2016.

You can find the Call for Participation for the interoperability test here with more information concerning preregistration etc. See you in Ispra!

eMRTD Test Specification Overview

Currently I’m preparing a project where an ePassport has to be tested. These tests start with the booklet and end with the chip. During the preparation the need for a test specification overview popped up. This need was the root of a new service here on this blog: an overview of all current specifications in the domains of this blog starting with eMRTDs and their corresponding inspection systems.
Keep calm and continue testingTo list all current specifications I’ve added a new page called ‘test specifications‘ in menu above. I will keep this list up-to-date in the future. Finally with every new version of a test specification I will update this list. Currently the list contains test specification released by ICAO and BSI. Both organisations are in the front of implementing tests in context of eMRTD and the corresponding back-end-systems. These certification schemes of BSI and ANSSI also base on these test specification.

Test specifications are “living documents”, which causes several modifications over the time. You need the test specifications, listed here, to prove conformity and finally certify your passport or inspection system.

With every new protocol you need some more or some modified test cases in the specifications. And also maintenance is an important fact to keep the test cases up-to-date. Additionally, I will list also test specifications of other domains like IoT in the closer future.

So have a look at this page next time when you’re back on this blog.

Update of RF and Protocol Testing Part 4 V2.10 online

Introduction

Simultaneously with Part 3, the ICAO released also version 2.10 of the test specification ‘RF and Protocol Testing Part 4‘ to test the interoperability of inspection systems (IS) in context of eMRTD. While the Technical Advisory Group (TAG) of ICAO endorsed the update on the ICAO website, from now on the test specification can be referenced officially. Finally in version 2.10 of the test specification there are some significant modifications compared with the previous version 1.01 released in 2013:

  • Support of protocol PACE-CAM:
    • New test suite ISO7816_G to test Chip Authentication,ICAO Logo
    • New default configuration including Chip Authentication,
    • Updated implementation conformance statement (ICS) to specify IS supporting PACE-CAM,
    • Updated list of abbreviations,
  • Tests for LDS 1.8,
  • Updated references concerning Doc9303 7th edition,
  • Added Advanced Inspection Procedure (AIP),
  • Additionally, there are some clarifications and minor editorial changes.

Furthermore you can find a more detailed list of changes and modifications in version 2.10 to test interoperability of inspection systems.

New test cases in Version 2.10 Update

Basically the new test cases are testing the protocol PACE-CAM or make use of the new LDS 1.8 data structure where the LDS version number is stored in EF.SOD (additionally to EF.COM).

  • ISO7816_C_29: PACE-CAM with missing tag 8Ah but correct ECAD
  • ISO7816_C_30: PACE-CAM with incorrectly encoded ECAD (no octet string)
  • ISO7816_C_31: PACE-CAM with wrong ECAD
  • ISO7816_C_32: PACE-CAM with wrong tag 8Ah (use 8Bh) but correct ECAD
  • ISO7816_C_33: PACE-CAM with correct tag 8Ah but missing ECAD
  • ISO7816_C_34: PACE-CAM with Passive Authentication
  • ISO7816_C_35: Return additional tag 8Ah during PACE-GM
  • ISO7816_C_36: Use DG14 without SecurityInfo during PACE-CAM
  • ISO7816_C_37: Use EF.CardSecurity with wrong ChipAuthenticationPublicKey during PACE-CAM
  • ISO7816_C_38: Use EF.CardSecurity without ChipAuthenticationPublicKeyInfo during PACE-CAM
  • ISO7816_C_39: Check supported standardized Domain Parameters with Chip Authentication Mapping
  • ISO7816_G_01: Chip Authentication with DH
  • ISO7816_G_02: Chip Authentication with ECDH
  • ISO7816_G_03: DG14 with one key reference
  • ISO7816_G_04: DG14 with two key references
  • ISO7816_G_05: DG14 with three key references
  • ISO7816_G_06: DG14 with invalid key reference
  • ISO7816_G_07: DG14 with corrupted DH public key
  • ISO7816_G_08: DG14 with corrupted ECDH public key
  • ISO7816_G_09: Use old session keys after Chip Authentication
  • ISO7816_G_10: Verify lifetime of ephemeral keys
  • ISO7816_G_11: DG14 with invalid DH public key specification
  • ISO7816_G_12: DG14 with invalid ECDH public key specification
  • ISO7816_G_13: ChipAuthenticationPublicKeyInfo: key reference does not match key reference in ChipAuthenticationInfo
  • ISO7816_G_14: Chip Authentication with Extended Length
  • ISO7816_G_15: Use various status words for invalid key reference
  • LDS_A_10: EF.COM with LDS version 1.8
  • LDS_D_35: EF.SOD with LDS Version 1.8
  • LDS_D_36: Security Object with LDS Version 1.8 but Version wrong number
  • LDS_D_37: Security Object with LDS Version 1.7 but Version number 1
  • LDS_D_38: EF.SOD with future LDS Version 1.9

Modified test cases in Version 2.10 Update

Due to the new document structure of version 2.10, it’s difficult to detect all modifications. Therefore please be aware that the list of modified test cases may not be complete and there might be more changes compared to previous version 1.01.

  • ISO7816_C_04: Added new OID for PACE-CAM in table corresponding to test case
  • ISO7816_D_07: Test case deleted

With the release of this test specification, version 2.10 is relevant for certification. So from now on, your inspection system must fulfill these conformity tests to achieve a certificate.

Update of RF and Protocol Testing Part 3 V2.10 online

Introduction

There is an update of ICAO’s test specification ‘RF and Protocol Testing Part 3‘ available. The specification is focusing on conformity testing and protocol testing for eMRTDs implementing protocols like BAC and PACE.ICAO Part 3 Cover

The Technical Advisory Group (TAG) of ICAO endorsed the updated release on the ICAO website, so from now on the test specification can be referenced officially. In version 2.10 of the test specification there are some major modifications:

  • Additional test cases for PACE-CAM (this includes modifications of existing test cases and also new test cases especially for PACE-CAM).
    • New test suite 7816_S to verify access rights (read and select) of EF.CardSecurity.
    • New test suite LDS_K to test presence and coding of SecurityInfo structures in EF.CardSecurity
  • The referenced documents are updated to Doc 9303 Edition 7 and old specifications including supplements are replaced.
  • With 7th edition of Doc 9303 the wording is changed from ‘PACEv2’ and ‘SAC’ to ‘PACE’.
  • And of course there are some minor editorial corrections.

The interim version 2.08 of this test specification was used during the interoperability test in London 2016 (first results of this event can be found in a previous post). This version was prepared at the meeting of ISO WG3 TF4R in Berlin to establish a valid version for the test event. Version 2.10 includes all the updates and some minor changes. In the following the update of version 2.10 is listed more detailed.

New test cases in layer 6

  • ISO7816_O_55: Accessing the EF.CardSecurity file with explicit file selection.
  • ISO7816_O_56: Accessing the EF.CardSecurity file with implicit file selection (ReadBinary with SFI).
  • ISO7816_O_57: Accessing the EF.CardSecurity file with ReadBinary. The test verifies the enforcement of SM after the PACE-CAM protocol has been performed successfully.
  • ISO7816_O_58: Accessing the EF.CardSecurity file with ReadBinary. The test verifies the enforcement of SM after a PACE protocol different from PACE-CAM has been performed successfully.
  • ISO7816_P_78: Positive test with a complete sequence of PACE without Chip Authentication Mapping commands and with MRZ password. The tag 0x8A during PACE-GM and PACE-IM MUST NOT be returned.
  • ISO7816_S_01: Accessing EF.CardSecurity with explicit file selection and Read Binary.
  • ISO7816_S_02: Accessing EF.CardSecurity with implicit file selection (ReadBinary with SFI).
  • ISO7816_S_03: Accessing EF.CardSecurity with explicit file selection and Read Binary OddIns.
  • ISO7816_S_04: Accessing EF.CardSecurity with implicit file selection (ReadBinary OddIns with SFI).

Modified test cases in layer 6

  • ISO7816_P_01: New step 6 and step 7 added for PACE-CAM, Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_02: New step 6 and step 7 added for PACE-CAM, Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_03: Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_14: Step 6 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_25: Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_26: Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_27: Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_28: Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_41: Adopted profile to handle PACE-CAM.
  • ISO7816_P_42: Adopted profile to handle PACE-CAM.
  • ISO7816_P_43: Adopted profile, step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_44: Adopted profile, Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_45: Adopted profile, step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_46: Adopted profile, step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_49: Adopted profile to handle PACE-CAM.
  • ISO7816_P_50: Adopted profile to handle PACE-CAM.
  • ISO7816_P_68: Adopted purpose.
  • ISO7816_P_73: Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_P_74: Step 5 return new data object 0x8A used in PACE-CAM.
  • ISO7816_R_05: Correction in referenced RFC.
  • ISO7816_R_06: Correction in referenced RFC.

New test cases in layer 7

  • LDS_E_09: Test that EF.DG14 contains at least one valid set of SecurityInfos for Chip Authentication. A chip supporting PACE-CAM must also support CA.
  • LDS_I_05: Verify that EF.CardAccess contains at least one valid PACEInfo for PACE-GM or PACE-IM as an additional mapping procedure if PACE-CAM is supported.
  • LDS_K_01: Test the ASN.1 encoding of the SecurityInfos.
  • LDS_K_02: Verify the ASN.1 encoding of the ChipAuthenticationPublicKey.
  • LDS_K_03: Test the coherency between the EF.CardSecurity and EF.CardAccess.
  • LDS_K_04: Verify that the parameterID also denotes the ID of the Chip Authentication key used, i.e. the chip MUST provide a ChipAuthenticationPublicKeyInfo with keyID equal to parameterID.

Modified test cases in layer 7

  • LDS_I_02: Added OIDs for PACE-CAM and new step 3 (to check that a valid OID is present for each declared configuration).
  • LDS_I_03: Added OID for PACE-CAM.
  • LDS_I_04: Test case deleted.
  • LDS_J_04: Correction in referenced RFC.

Previous ideas to migrate this test specification to an ISO document are canceled due to political reasons. Part 3 (eMRTD) and Part 4 (inspection systems) will be ICAO documents furthermore whereas Part 1 (durability of ePassports) and Part 2 (contactless interface) are still migrated to ISO documents (ISO 18745-1 and ISO 18745-2).

First results of eMRTD Interoperability Test 2016

During 10th Security Document World 2016 an additional Interoperability Test for eMRTD with PACE took place in London. In context of ePassports this was the 14th event starting 2003 on Canberra. This time there were two test labs involved, 17 document providers and twelve inspection system providers. Here I will focus on the conformity test including test labs and document providers and the InteropTest results. The event was organised by the colleagues of secunet. The following document providers delivered in sum 27 samples:

Logo of SDW InteropTest

  • Arjo Systems
  • Atos IT Solutions and Services
  • Bundesdruckerei
  • Canadian Banknote Company
  • cryptovision
  • De La Rue
  • Gemalto
  • ID&Trust
  • Imprimerie Nationale Group
  • Iris Corporation Berhad
  • MaskTech
  • Morpho
  • NXP Semiconductors
  • Oberthur Technologies
  • PAV Card
  • Polygraph combine ‘Ukraina’
  • PWPW

And the following test laboratories performed a subset of tests focusing on PACE (and of course PACE-CAM):

  • Keolabs (France)
  • HJP Consulting / TÜViT (Germany)

The test cases performed during the event based on ICAO’s test specification ‘RF Protocol and Application Test Standard for eMRTD – Part 3‘ Version 2.08 RC2 including some minor adaptions based on the last WG3TF4 meeting in Berlin. The final version 2.08 of this test specification will be released soon and deltas will be listed in an additional blog post here. With focus on PACE-CAM the following test suites were performed by both test labs:

  • Test Unit 7816_O (Security Conditions for PACE-protected eMRTDs)
  • Test Unit 7816_P (Password Authenticated Connection Establishment)
  • Test Unit 7816_Q (Select and Read EF.CardAccess)
  • Test Unit 7816_S (Select and Read EF.CardSecurity)
  • Test Unit LDS_E (Data Group 14)
  • Test Unit LDS_I (EF.CardAccess)
  • Test Unit LDS_K (EF.CardSecurity)

Some statistics concerning the samples:

  • PACE-CAM was supported in the following types:
    • Generic Mapping (GM), Chip Authentication Mapping (CAM): 18 samples
    • Integrated Mapping (IM), CAM: 4 samples
    • GM, IM and CAM: 4 samples
  • LDS:
    • 25 samples used LDS1.7
    • 1 sample used LDS1.8
    • 1 sample used LDS2.0 (with backward compatibility to LDS1.7)

In the preliminary InteropTest results presented by Michael Schlüter during the SDW he mentioned, that 8502 test cases were performed during conformity testing by the test labs and 98% of the relevant test cases were passed by the samples. Additionally, the test results of both labs were fairly consistent. There was one test case that causes the most failures and this test case verifies ChipAuthenticationPublicKey in EF.CardSecurity (LDS_K_2). Here we need some clarification in the specification Doc9303 and finally in the test specification.

During the crossover test there were three problems detected: At first the sequence of PACE, CA and TA was performed correctly while the sequence of PACE-CAM and TA causes some problems during the inspection procedure of the readers. This might be based in the fact, that PACE-CAM is specified in an ICAO document and TA in a BSI document. Some inspection systems had also problems with alternative File IDs for EF.CVCA. The alternative FID can be defined in TerminalAuthenticationInfo (see A.1.1.3 in TR-03110 Part 3) and must be used by the inspection systems to address and read EF.CVCA. But a bad surprise in the InteropTest results was, that around 50% of the inspection systems don’t perform Passive Authentication (PA) correctly. During the preparation of the InteropTest a wrong CSCA certificate was distributed and 50% of the systems have not detected this wrong certificate, this means: 50% of the inspection systems failed in Passive Authentication! During the conference Dr. Uwe Seidel (Bundeskriminalamt, BKA) noticed, that this number mirrors the real world and that in fact PA is currently a real problem in border control.

The InteropTest results can be summed up in two statements:

  1. There is a very good quality of the eMRTD samples.
  2. Reader vendors have still some work to do, especially to implement Passive Authentication correctly.

A detailed test report of this event and the InteropTest results will be published by secunet in June 2016.

Update: The final test report can now be downloaded here (after a short registration at the SDW website).

Chip Authentication Version 3 (CAv3)

This post describes a new version 3 of well-known protocol Chip Authentication, which is used in context of eID to authenticate the chip and to establish a strong secure channel between chip and terminal.

In context of the European eIDAS regulation, the German BSI and the French ANSSI have specified in TR-03110 a new version 3 of protocol Chip Authentication (CAv3). It bases on ephemeral-static Diffie-Hellman key agreement, that provides both secure communication and also unilateral authentication of the chip. This new protocol is an alternative to Chip Authentication Version 2 and Restricted Identification (RI) providing additional features. CAv3 provides the following benefits (see TR-03110 part 2):

  • message-deniable strong explicit authentication of the eIDAS token and of the provided sector-specific identifiers towards the terminal,
  • pseudonymity of the eIDAS token without the need of using the same keys on several chips,
  • possibility of whitelisting eIDAS token (even in case of a compromised group key),
  • implicit authentication of stored data by performing Secure Messaging using new session keys derived during CAv3.

Before CAv3 is started the well-known protocol Terminal Authentication Version 2 (TAv2) must performed because the terminal’s ephemeral key pair generated during TAv2 is used during CAv3. It is also recommend that Passive Authentication is performed before CAv3 to assure the authenticity of chip’s public key.

Following table describes the command during CAv3 respective PSA (Source ISO/IEC 19286):

Command description of Chip Authentication V3 (CAv3) protocol (Source ISO/IEC 19286)

Command description of CAv3 protocol (Source ISO/IEC 19286)

The protocol CAv3 consists of the following two steps (where terminal and eIDAS token are involved):

  1. Perform Key Agreement (based on Anonymous Diffie Hellman (ADH))
    • Kee Agreement is performed in this step of the protocol:
      • MSE:SET AT with CA-OID and reference to private key
      • GENERAL AUTHENTICATE with dynamic authentication data (ephemeral public key)
  2. Perform Pseudonymous Signature Authentication (PSA)
    • Pseudonymous Signature is computed in this step of the protocol:
      • MSE:SET AT with PSA-OID and reference to private key
      • GENERAL AUTHENTICATE with dynamic authentication data (public key for domain-specific identifier)

Additionally, the received sector-specific identifier can be checked if it is black-listed (or white-listed).

On this way the new protocol CAv3 can be used in addition to sign data under a chip and sector specific pseudonym as an alternative to Restricted Identification.

 

Maintenance release of BSI TR-03105 Part 5.1

The German BSI has published a maintenance release of technical guideline TR-03105 Part 5.1 Version 1.41 for inspection systems with Extended Access Control (EAC).

Since last release of TR-03105 several (mostly editorial) comments were resolved and integrated in this maintenance release. Part 5.1 describes conformity tests for inspection systems with protocols like PACE, Terminal Authentication and Chip Authentication typically used at (automatic) border control, e.g. eGates.

Maintenance of TR-03105 for inspection systems, http://www.iconarchive.com/artist/oxygen-icons.org.html

Besides some editorial changes the new version 1.41 contains the following modifications:

  • ISO7816_G_36: If a EF.CardAccess contains an invalid OID for PACE-CAM, the inspection system shall use an alternative mapping protocol, that is supported by the chip.
  • ISO7816_G_37: This test case is deleted, because it’s not necessary for an inspection system to check that GM and IM are also supported by the chip besides PACE-CAM.
  • ISO7816_G_41: Curves with parameterID 0, 1 and 2 are based on DH and DH is not supported in context of PACE-CAM. So these curves are deleted.
  • LDS_H_86: Correction in expected result (PASS instead of FAIL).
  • Chapter 7: Relevant algorithms and OIDs for PACE, that must be supported by the inspection system, are added.
  • Chapter 7: Update of hashing algorithms.

For the next major update there should be a discussion how to handle fingerprints (data group 3, EF.DG3) and iris (data group 4, EF.DG4) of people who don’t have a finger or an iris. In this case these data groups should store an empty but valid data structure. Currently there are no test cases specified for these situations in TR-03105 Part 5.1. But inspection systems should be able to handle such cases also, of course.

So you can see, that test specifications in context of eMRTD (ePassports) and inspection systems are always in progress. If you have any comments concerning these test specifications or ideas of test cases, that should also be performed focusing on interoperability, please don’t hesitate to contact me or leave a comment.